
Just How
Functional
is Raku?

100	doors

There are 100 doors in a row that are all initially closed.
You make 100 passes by the doors.
The first time through, visit every door and toggle the door (if the door is closed, open it; if
it is open, close it).
The second time, only visit every 2nd door (door #2, #4, #6, ...), and toggle it.
The third time, visit every 3rd door (door #3, #6, #9, ...), etc, until you only visit the
100th door.

Task
Answer the question: what state are the doors in after the last pass? Which are open,
which are closed?

#viz.
https://rosettacode.org/
wiki/100_doors

Here’s a Random Pick from Rosetta code: 100 doors

Let’s see how it looks in Elm (a famous functional language)

[this is the unoptimized variation]

https://rosettacode.org/wiki/Rosetta_Code:Multiple_passes

import List exposing (indexedMap, foldl, repeat, range)
import Html exposing (text)
import Debug exposing (toString)

type Door = Open | Closed

toggle d = if d == Open then Closed else Open

toggleEvery : Int -> List Door -> List Door
toggleEvery k doors = indexedMap
 (\i door -> if modBy k (i+1) == 0 then toggle door else door)
 doors

n = 100

main =
 text (toString (foldl toggleEvery (repeat n Closed) (range 1 n)))

Elm
functional

enum Door <Closed Open>;

sub toggle(\d) { if d {Closed} else {Open} };

sub toggleEvery(Door @doors, Int \k --> Array[Door]()) {
 @doors.map: -> \door {if ++$ %% k {toggle door} else {door}};
}

my \n = 100;
my Door @doors = Closed xx n;

say reduce &toggleEvery, @doors, |(1..n);

Raku
 functional

import List exposing (indexedMap, foldl, repeat, range)
import Html exposing (text)
import Debug exposing (toString)

type Door = Closed | Open

 toggle d = if d == Open then Closed else Open

 toggleEvery : Int -> List Door -> List Door
 toggleEvery k doors = indexedMap
 (\i door -> if modBy k (i+1) == 0 then toggle door else door)
 doors

 n = 100

main =
 text (toString (foldl toggleEvery (repeat n Closed) (range 1 n)))

enum Door <Closed Open>;

sub toggle(\d) { if d == Open {Closed} else {Open} };

sub toggleEvery(Door @doors, Int \k --> Array[Door]()) {

 @doors.map: -> \door { if ++$ %% k { toggle door } else { door } };
}

my \n = 100;
my Door @doors = Closed xx n;

 say reduce &toggleEvery, @doors, |(1..n);

The nice surprise is how well Raku can ape Elm. As the direct
descendant of perl (home of .map, .grep and so on) plus types
Raku can be home to all those who want their code functional.

import List exposing (indexedMap, foldl, repeat, range)
import Html exposing (text)
import Debug exposing (toString)

type Door = Open | Closed

toggle d = if d == Open then Closed else Open

toggleEvery : Int -> List Door -> List Door
toggleEvery k doors = indexedMap
 (\i door -> if modBy k (i+1) == 0 then toggle door else door)
 doors

n = 100

main =
 text (toString (foldl toggleEvery (repeat n Closed) (range 1 n)))

3 lines of
boilerplate

“pure”
functional

over 2 lines

“print” is a bit
verbose

enum Door <Closed Open>;

sub toggle(\d) { if d {Closed} else {Open} };

sub toggleEvery(Door @doors, Int \k --> Array[Door]()) {
 @doors.map: -> \door { if ++$ %% k { toggle door } else { door } };
}

my \n = 100;
my Door @doors = Closed xx n;

say reduce &toggleEvery, @doors, |(1..n);

sub to declare
a function

“impure”
functional on

1 line

say is
friendly

xx for
repeat

$ state
variable

.. for Range
| to flatten

reduce is
foldl

my to declare
@ for array

() coerces
return
type

enum Door <Closed Open>;

sub toggle(\d) { Door(+not d) };

sub toggleEvery(@doors, \k) {
 @doors.map: { ++$ %% k ?? toggle $_ !! $_ }
}

my \n = 100;

say reduce &toggleEvery, [Closed xx 100], |(1..n);

Or, you may prefer untyped Raku, to whip something up

Raku
 functional &&
 untyped

enum Door <Closed Open>;

sub toggle(\d) { if d {Closed} else {Open} };

sub toggleEvery(Door @doors, Int \k --> Array[Door]()) {
 @doors.map: -> \door {if ++$ %% k {toggle door} else {door}};
}

my \n = 100;
my Door @doors = Closed xx n;

say reduce &toggleEvery, @doors, |(1..n);

enum Door <Closed Open>;

sub toggle(\d) { Door(+not d) };

sub toggleEvery(@doors, \k) {
 @doors.map: { ++$ %% k ?? toggle $_ !! $_ }
}

my \n = 100;

say reduce &toggleEvery, [Closed xx 100], |(1..n);

enum Door <Closed Open>;

sub toggle(\d) { Door(+not d) };

sub toggleEvery(@doors, \k) {
 @doors.map: { ++$ %% k ?? toggle $_ !! $_ }
}

my \n = 100;

say reduce &toggleEvery, [Closed xx 100], |(1..n);

coerce not
enum since
{Closed=>0,

Open=>1}

ternary if then
else

can eliminate
@doors

variable with
literal Array

my \n = 100;
my @doors = False xx n;

(.=not for @doors[0, $_ ... n]) for 1..n;

print <Closed Open>[@doors[$_]] for 1..n;

Or, you may prefer Raku with all the toys to maximize -Ofun

Raku
 set to eleven

my \n = 100;
my @doors = False xx n;

(.=not for @doors[0, $_ ... n]) for 1..n;

print <Closed Open>[@doors[$_]] for 1..n;

Or, you may prefer Raku with all the toys to maximize -Ofun

Raku
 set to elevenwith Bools,

toggle
becomes

not

.= to apply
operation in

place

... is the
sequence
operator

Bools have
value 0,1

can be
indices

Just How
(Fun)ctional
is Raku?

viz. https://docs.raku.org/language/haskell-to-p6
code. https://gist.github.com/librasteve/36ca4a2876618ea426d30aa80667e923

https://docs.raku.org/language/haskell-to-p6
https://gist.github.com/librasteve/36ca4a2876618ea426d30aa80667e923

